Advertisements
Advertisements
प्रश्न
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
उत्तर
Let I = `int "e"^"x"/(4"e"^"2x" -1)` dx
`"I" = int "e"^"x"/(4("e"^"x")^2 - 1)` dx
Put ex = t
∴ ex dx = dt
∴ I = `int "dt"/(4"t"^2 - 1)`
`∴ "I" = 1/4 int 1/("t"^2 - 1/4)` dt
`∴ "I" = 1/4 int 1/("t"^2 - (1/2)^2)` dt
`∴ "I" = 1/4 . 1/(2 (1/2)) log |("t" - 1/2)/("t" + 1/2)|` + c
`∴ "I" = 1/4 log |("2t" - 1)/("2t" + 1)|` + c
Resubstitute t = ex
`∴ "I" = 1/4 log |(2"e"^"x" - 1)/(2"e"^"x" + 1)|` + c
Notes
Answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int x^2.log x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int"e"^(4x - 3) "d"x` = ______ + c
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
Find: `int e^x.sin2xdx`
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
`int1/(x+sqrt(x)) dx` = ______
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^3 e^(x^2)dx`