Advertisements
Advertisements
प्रश्न
`int 1/sqrt(x^2 - a^2)dx` = ______.
उत्तर
`int 1/sqrt(x^2 - a^2)dx` = `bb(underline(log|x + sqrt(x^2 - a^2)| + c)`.
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following w.r.t.x : e2x sin x cos x
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int"e"^(4x - 3) "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Solve: `int sqrt(4x^2 + 5)dx`
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx