Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
उत्तर
Let I = `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Put log x = t
∴ `1/"x" "dx" = "dt"`
∴ I = `int "dt"/("t"^2 + 4"t" - 1)`
`= int 1/("t"^2 + 4"t" + 4 - 4 - 1)`dt
`= int 1/(("t + 2")^2 - 5)` dt
`= int 1/(("t + 2")^2 - (sqrt5)^2)` dt
`= 1/(2 sqrt5) log |("t" + 2 - sqrt5)/("t" + 2 + sqrt5)|` + c
∴ I = `1/(2 sqrt5) log|(log"x" + 2 - sqrt5)/(log "x" + 2 + sqrt5)|` + c
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in `x^2e^x`.
Integrate the function in (sin-1x)2.
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int logx/x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Solve the following
`int_0^1 e^(x^2) x^3 dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.