मराठी

Integrate the function in x2ex. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in `x^2e^x`.

बेरीज

उत्तर

Let `I = int x^2 e^x dx`

Put u = x2, v = ex 

`int uv  dx = u int v  dx - int( (du)/dx int v  dx) dx`

`= x^2 int e^x dx - int (2x).e^x dx`

`= x^2 e^x - 2 int xe^x dx`

We define the first function by integrating multiple parts.

`I = x^2 e^x - 2 [x int e^x  dx - int (d/dx  x. int e^x  dx)]`

`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`

`= x^2 e^x - 2x  e^x + 2e^x + C`

`= e^x (x^2 - 2x + 2) + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 3 | पृष्ठ ३२७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x sin-1 x.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int "e"^x x/(x + 1)^2  "d"x`


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find: `int e^x.sin2xdx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`inte^x sinx  dx`


The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×