Advertisements
Advertisements
प्रश्न
Integrate the function in `x^2e^x`.
उत्तर
Let `I = int x^2 e^x dx`
Put u = x2, v = ex
`int uv dx = u int v dx - int( (du)/dx int v dx) dx`
`= x^2 int e^x dx - int (2x).e^x dx`
`= x^2 e^x - 2 int xe^x dx`
We define the first function by integrating multiple parts.
`I = x^2 e^x - 2 [x int e^x dx - int (d/dx x. int e^x dx)]`
`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`
`= x^2 e^x - 2x e^x + 2e^x + C`
`= e^x (x^2 - 2x + 2) + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in `(xe^x)/(1+x)^2`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`intx^2 e^(x^3) dx` equals:
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int "e"^x x/(x + 1)^2 "d"x`
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find: `int e^x.sin2xdx`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`inte^x sinx dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`