English

Integrate the function in x2ex. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `x^2e^x`.

Sum

Solution

Let `I = int x^2 e^x dx`

Put u = x2, v = ex 

`int uv  dx = u int v  dx - int( (du)/dx int v  dx) dx`

`= x^2 int e^x dx - int (2x).e^x dx`

`= x^2 e^x - 2 int xe^x dx`

We define the first function by integrating multiple parts.

`I = x^2 e^x - 2 [x int e^x  dx - int (d/dx  x. int e^x  dx)]`

`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`

`= x^2 e^x - 2x  e^x + 2e^x + C`

`= e^x (x^2 - 2x + 2) + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 3 | Page 327

RELATED QUESTIONS

Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in ex (sinx + cosx).


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


`int (sinx)/(1 + sin x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int(logx)^2dx` equals ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`int logx  dx = x(1+logx)+c`


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate:

`int x^2 cos x  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×