Advertisements
Advertisements
Question
Integrate the function in `x^2e^x`.
Solution
Let `I = int x^2 e^x dx`
Put u = x2, v = ex
`int uv dx = u int v dx - int( (du)/dx int v dx) dx`
`= x^2 int e^x dx - int (2x).e^x dx`
`= x^2 e^x - 2 int xe^x dx`
We define the first function by integrating multiple parts.
`I = x^2 e^x - 2 [x int e^x dx - int (d/dx x. int e^x dx)]`
`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`
`= x^2 e^x - 2x e^x + 2e^x + C`
`= e^x (x^2 - 2x + 2) + C`
APPEARS IN
RELATED QUESTIONS
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in ex (sinx + cosx).
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int (sinx)/(1 + sin x) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int(logx)^2dx` equals ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int(1-x)^-2 dx` = ______
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
`int logx dx = x(1+logx)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate:
`int x^2 cos x dx`