English

Integrate the following functions w.r.t. x : x2.a2-x6 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`

Sum

Solution

Let I = `int x^2 .sqrt(a^2 - x^6).dx`

Put x3 = t
∴ 3x2.dx = dt

∴ x2dx = `(1)/(3).dt`

∴ I = `int sqrt(a^2 - t^2).dt/(3) = (1)/(3) int sqrt(a^2 - t^2).dt`

= `(1)/(3)[t/2 sqrt(a^2 - t^2) + a^2/(2) sin^-1 (t/a)] + c`

= `(1)/(6)[x^3 sqrt(a^2 - x^6) + a^2sin^-1 (x^3/a)] + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 138]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin 3x.


Integrate the function in x cos-1 x.


Integrate the function in x sec2 x.


Integrate the function in x (log x)2.


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int 1/(4x + 5x^(-11))  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


`intsqrt(1+x)  dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int logx  dx = x(1+logx)+c`


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×