Advertisements
Advertisements
Question
Evaluate: `int "dx"/("9x"^2 - 25)`
Solution
Let I = `int "dx"/("9x"^2 - 25)`
`= int 1/(9 ("x"^2 - 25/9))` dx
`= 1/9 int 1/("x"^2 - (5/3)^2)` dx
`= 1/9 * 1/(2 * 5/3) log |("x" - 5/3)/("x" + 5/3)|` + c
∴ I = `1/30 log |(3"x" - 5)/("3x" + 5)|` + c
APPEARS IN
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in `x^2e^x`.
Integrate the function in tan-1 x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Find :
`∫(log x)^2 dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Solution of the equation `xdy/dx=y log y` is ______
`int logx dx = x(1+logx)+c`
Evaluate:
`inte^x sinx dx`
Evaluate `int tan^-1x dx`