English

Integrate the function in ex(1x-1x2). - Mathematics

Advertisements
Advertisements

Question

Integrate the function in `e^x (1/x - 1/x^2)`.

Sum

Solution

Let `I = inte^x (1/x - 1/x^2)  dx`

`= int e^x {1/x + [d/dx (1/x)]}  dx`

`= e^x xx 1/x + C = e^x/x + C`       `...[∵ int e^x (f (x)+ f' (x)) dx = e^x f (x) + C]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 328]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 19 | Page 328

RELATED QUESTIONS

If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: ∫ (log x)2 dx


Choose the correct alternative:

`intx^(2)3^(x^3) "d"x` =


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(x log x)  "d"x`


`int log x * [log ("e"x)]^-2` dx = ?


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


Solve: `int sqrt(4x^2 + 5)dx`


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int1/sqrt(x^2 - a^2) dx` = ______


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×