English

Integrate the function in x tan-1 x. - Mathematics

Advertisements
Advertisements

Question

Integrate the function in x tan-1 x.

Sum

Solution

Let `I = int x tan^-1 x dx`

`= tan^-1 x int x  dx - int [(d/dx(tan^-1 x)) int (x  dx)]  dx`

`= tan^-1 x (x^2/2) - int 1/ (1 + x^2) * x^2/2 dx`

`= x^2/2 tan^-1 x - 1/2 int x^2/ (x^2 + 1) dx`

`= x^2/2 tan^-1 x - 1/2 int (x^2 + 1 - 1)/ (1 + x^2)  dx`

`= x^2/2 tan^-1 x - 1/2 int (1 - 1/(1 + x^2)) dx`

`= x^2/2 tan^-1 x - 1/2 (x - tan^-1 x) + C`

`= x^2/2 tan^-1 x - 1/2 x + 1/2 tan^-1 x + C`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise 7.6 [Page 327]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 7 Integrals
Exercise 7.6 | Q 8 | Page 327

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x cos-1 x.


Integrate the function in x sec2 x.


Integrate the function in tan-1 x.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int 1/(4x + 5x^(-11))  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×