English

Evaluate the following : ∫x3.tan-1x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int x^3.tan^-1x.dx`

Sum

Solution

Let I = `int x^3.tan^-1x.dx`

= `int (tan^-1 x).x^3dx`

= `(tan^-1x) int x^3.dx - int [{d/dx (tan^-1 x) int x^3.dx}].dx`

= `(tan^-1x) (x^4/4) - int (1/(1 + x^2))x^4/(4).dx`

= `x^4/(4) tan^-1x - (1)/(4) ((x^4 - 1) + 1)/(x^2 + 1)`

= `x^4/(4) tan^-1x - (1)/(4) int ((x^2 - 1)(x^2 + 1) + 1)/(x^2 + 1).dx`

= `x^4/(4) tan^-1x - (1)/(4) int [x^2 - 1 + 1/(x^2 + 1)].dx`

= `x^4/(4) tan^-1x - (1)/(4) int [int x^2.dx - int 1.dx + int 1/(x^2 + 1).dx]`

= `x^4/(4) tan^-1x - (1)/(4)[x^3/3 - x + tan^-1x] + c`

= `x^4/(4) tan^-1x - tan^-1  x/(4) - x^3/(12) - x/(4) + c`

= `(1)/(4) (tan^-1x) (x^4 - 1) - x/(12) (x^2 - 3) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.3 [Page 137]

APPEARS IN

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin x.


Integrate the function in `x^2e^x`.


Integrate the function in x sec2 x.


Integrate the function in x (log x)2.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in e2x sin x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int logx/x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sinx)/(1 + sin x)  "d"x`


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


∫ log x · (log x + 2) dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int 1/sqrt(x^2 - a^2)dx` = ______.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


The value of `inta^x.e^x dx` equals


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×