Advertisements
Advertisements
Question
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Options
`e^(sin^-1x)*(sin^-1 x - 1) + c`
`e^(sin^-1x)*(1 - sin^-1x) + c`
`e^(sin^-1x)*(sin^-1 x + 1) + c`
`-e^(sin^-1x)*(sin^-1 x + 1) + c`
Solution
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = `underlinebb(e^(sin^-1x)*(sin^-1 x - 1) + c)`.
RELATED QUESTIONS
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x log 2x.
Integrate the function in x2 log x.
Integrate the function in x tan-1 x.
Integrate the function in tan-1 x.
Integrate the function in (x2 + 1) log x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int logx/x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x log x) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(1-x)^-2 dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
The value of `inta^x.e^x dx` equals