English

If f(x) = gsin-1x1-x2,g(x)=esin-1x, then g∫f(x)⋅g(x)⋅dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.

Options

  • `e^(sin^-1x)*(sin^-1 x - 1) + c`

  • `e^(sin^-1x)*(1 - sin^-1x) + c`

  • `e^(sin^-1x)*(sin^-1 x + 1) + c`

  • `-e^(sin^-1x)*(sin^-1 x + 1) + c`

MCQ
Fill in the Blanks

Solution

If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = `underlinebb(e^(sin^-1x)*(sin^-1 x - 1) + c)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - MCQ

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`


Integrate the function in x sin x.


Integrate the function in `x^2e^x`.


Integrate the function in x log 2x.


Integrate the function in xlog x.


Integrate the function in x tan-1 x.


Integrate the function in tan-1 x.


Integrate the function in (x2 + 1) log x.


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int logx/x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^2 "e"^"3x"`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


`int(logx)^2dx` equals ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


Solution of the equation `xdy/dx=y log y` is ______


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate:

`int e^(logcosx)dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


The value of `inta^x.e^x dx` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×