Advertisements
Advertisements
Question
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Solution
Let I = `int "e"^"x"/(4"e"^"2x" -1)` dx
`"I" = int "e"^"x"/(4("e"^"x")^2 - 1)` dx
Put ex = t
∴ ex dx = dt
∴ I = `int "dt"/(4"t"^2 - 1)`
`∴ "I" = 1/4 int 1/("t"^2 - 1/4)` dt
`∴ "I" = 1/4 int 1/("t"^2 - (1/2)^2)` dt
`∴ "I" = 1/4 . 1/(2 (1/2)) log |("t" - 1/2)/("t" + 1/2)|` + c
`∴ "I" = 1/4 log |("2t" - 1)/("2t" + 1)|` + c
Resubstitute t = ex
`∴ "I" = 1/4 log |(2"e"^"x" - 1)/(2"e"^"x" + 1)|` + c
Notes
Answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)