English

Evaluate: ∫1x2+25dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate:

`int1/(x^2 + 25)dx`

Evaluate

Solution

Let I = `int1/(x^2 + 25)dx`

= `1/(x^2 + (5)^2)dx`

= `1/5 tan^-1  x/5 + c`

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (March) Official

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


Integrate : sec3 x w. r. t. x.


Prove that:

`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`


Integrate the function in x log x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in x (log x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int e^(2x).cos 3x.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: ∫ (log x)2 dx


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int(1-x)^-2 dx` = ______


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`intcos^-1(sqrt(x))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate `int (1 + x + x^2/(2!))dx`


Evaluate:

`int x^2 cos x  dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate the following.

`intx^3/(sqrt(1 + x^4))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×