Advertisements
Advertisements
प्रश्न
Evaluate:
`int1/(x^2 + 25)dx`
उत्तर
Let I = `int1/(x^2 + 25)dx`
= `1/(x^2 + (5)^2)dx`
= `1/5 tan^-1 x/5 + c`
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x log x.
Integrate the function in x2 log x.
Integrate the function in x cos-1 x.
Integrate the function in x sec2 x.
Integrate the function in tan-1 x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (x2 + 1)
Integrate the following w.r.t.x : sec4x cosec2x
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
Evaluate: ∫ (log x)2 dx
`int 1/(4x + 5x^(-11)) "d"x`
`int 1/sqrt(2x^2 - 5) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
`int 1/x "d"x` = ______ + c
`int "e"^x x/(x + 1)^2 "d"x`
`int logx/(1 + logx)^2 "d"x`
`int cot "x".log [log (sin "x")] "dx"` = ____________.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
`int(logx)^2dx` equals ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int1/(x+sqrt(x)) dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate `int(1 + x + (x^2)/(2!))dx`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int e^(logcosx)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Evaluate the following.
`intx^3 e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1 + x + x^2/(2!))dx`.