Advertisements
Advertisements
प्रश्न
Evaluate the following : `int x^3.tan^-1x.dx`
उत्तर
Let I = `int x^3.tan^-1x.dx`
= `int (tan^-1 x).x^3dx`
= `(tan^-1x) int x^3.dx - int [{d/dx (tan^-1 x) int x^3.dx}].dx`
= `(tan^-1x) (x^4/4) - int (1/(1 + x^2))x^4/(4).dx`
= `x^4/(4) tan^-1x - (1)/(4) ((x^4 - 1) + 1)/(x^2 + 1)`
= `x^4/(4) tan^-1x - (1)/(4) int ((x^2 - 1)(x^2 + 1) + 1)/(x^2 + 1).dx`
= `x^4/(4) tan^-1x - (1)/(4) int [x^2 - 1 + 1/(x^2 + 1)].dx`
= `x^4/(4) tan^-1x - (1)/(4) int [int x^2.dx - int 1.dx + int 1/(x^2 + 1).dx]`
= `x^4/(4) tan^-1x - (1)/(4)[x^3/3 - x + tan^-1x] + c`
= `x^4/(4) tan^-1x - tan^-1 x/(4) - x^3/(12) - x/(4) + c`
= `(1)/(4) (tan^-1x) (x^4 - 1) - x/(12) (x^2 - 3) + c`.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x log 2x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in x sec2 x.
Integrate the function in x (log x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/x "d"x` = ______ + c
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`int(logx)^2dx` equals ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`intsqrt(1+x) dx` = ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`inte^x sinx dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate the following.
`intx^3/(sqrt(1 + x^4))dx`
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`