Advertisements
Advertisements
प्रश्न
Evaluate:
`inte^x sinx dx`
योग
उत्तर
Let I = `inte^x sinx dx` ....(1)
Integrating by parts,
I = `e^x int sin x dx - int(intsinx dx d/dx e^x)dx`
= `e^x(-cosx) - int - cosx*e^xdx`
= `-e^x cosx + inte^x cosx dx`
Again integrating by parts,
I = `-e^x cosx + e^x int cosx dx - int(intcosx dx d/dx e^x)dx`
I = `-e^x cosx + e^x sinx - int sinxe^x dx`
∴ I = `-e^x cosx + e^x sinx - I` ....[From (1)]
∴ 2I = `-e^x(cosx - sinx) + c_1`
∴ I = `e^x/2(sinx - cosx) + c ("where" c = c_1/2)`
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?