Advertisements
Advertisements
प्रश्न
`int e^x sec x (1 + tan x) dx` equals:
विकल्प
ex cos x + C
ex sec x + C
ex sin x + C
ex tan x + C
उत्तर
ex sec x + C
Explanation:
Let `I = int e^x sec x (1 + tan x) dx`
`= int e^x (sec x + sec x tan x) dx`
` = int (sec x) e^x dx + int e^x sec x tan x dx`
`= I_1 + int e^x sec x tan x` .... (1)
`I_1 = int (sec x)e^x dx`
`I_1 = (sec x) int e^x dx - int (sec x tan x int e^x dx) dx`
`= (sec x) e^x - int e^x sec x tan x dx`
Putting this value in equation (1),
`I = I_1 + int e^x sec x tan x dx`
`= (sec x) e^x - int e^x sec x tan x dx + int e^x sec x tan x dx + C`
`= e^x sec x + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x2 log x.
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in `e^x (1 + sin x)/(1+cos x)`.
`intx^2 e^(x^3) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int 1/(4x + 5x^(-11)) "d"x`
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
Solution of the equation `xdy/dx=y log y` is ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`intx^3 e^(x^2)dx`