हिंदी

∫exsecx(1+ tanx)dx equals: - Mathematics

Advertisements
Advertisements

प्रश्न

`int e^x sec x (1 +   tan x) dx` equals:

विकल्प

  • ex cos x + C

  • ex sec x + C

  • ex sin x + C

  • ex tan x + C

MCQ

उत्तर

ex sec x + C

Explanation:

Let `I = int e^x sec x (1 + tan x) dx`

`= int e^x (sec x + sec x tan x) dx`

` = int (sec x) e^x dx + int e^x  sec x tan x dx`

`= I_1 + int e^x sec x tan x`    .... (1)

`I_1 = int (sec x)e^x dx`

`I_1 = (sec x) int e^x  dx - int (sec x tan x int e^x dx) dx`

`= (sec x) e^x - int e^x sec x tan x dx`

Putting this value in equation (1),

`I = I_1 + int e^x sec x tan x  dx`

`= (sec x) e^x - int e^x sec x tan x  dx + int e^x sec x tan x  dx + C`

`= e^x sec x + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 24 | पृष्ठ ३२८

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin x.


Integrate the function in xlog x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in x (log x)2.


Integrate the function in (x2 + 1) log x.


Integrate the function in `e^x (1 + sin x)/(1+cos x)`.


`intx^2 e^(x^3) dx` equals: 


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


`int 1/(4x + 5x^(-11))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int e^x.sin2xdx`


Solution of the equation `xdy/dx=y log y` is ______


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`intx^3 e^(x^2)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×