Advertisements
Advertisements
प्रश्न
`int ("d"x)/(x - x^2)` = ______
विकल्प
log x – log(1 – x) + c
log(1 – x2) + c
– log x + log(1 – x) + c
log(x – x2) + c
उत्तर
`int ("d"x)/(x - x^2)` = log x – log(1 – x) + c
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/x "d"x` = ______ + c
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
`int logx/(1 + logx)^2 "d"x`
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx