Advertisements
Advertisements
प्रश्न
Evaluate `int 1/(4x^2 - 1) "d"x`
उत्तर
Let I = `int ("d"x)/(4x^2 - 1)`
= `1/4 int ("d"x)/(x^2 - 1/4)`
= `1/4 int ("d"x)/(x^2 - (1/2)^2`
= `1/4 xx 1/(2 xx 1/2) log |(x - 1/2)/(x + 1/2)| + "c"`
∴ I = `1/4 log|(2x - 1)/(2x + 1)| + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sec2 x.
Evaluate the following : `int x^2.log x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int "e"^x x/(x + 1)^2 "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
The value of `inta^x.e^x dx` equals