Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
उत्तर
Let I = `int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Put f(x) = (log x)2
∴ f '(x) = `(2 log "x")/"x"`
∴ I = ∫ ex [f(x) + f '(x)] + dx
= ex f(x) + c
∴ I = ex (log x)2 + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin-1 x.
Integrate the function in x tan-1 x.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int1/(x+sqrt(x)) dx` = ______
Evaluate:
`intcos^-1(sqrt(x))dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`