Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
उत्तर १
Let I =`int (log "x")/(1 + log "x")^2` dx
Put log x = t
∴ x = et
∴ dx = et dt
∴ I = `int "t"/(1 + "t")^2 "e"^"t" "dt"`
`= int "e"^"t" [(("t" + 1) - 1)/(1 + "t")^2]` dt
`= int "e"^"t" [cancel("t + 1")/("1 + t")^cancel2 - 1/(1 + "t")^2]` dt
`= int "e"^"t" [1/(1 + "t") - 1/(1 + "t")^2]` dt
Put f(t) = `1/"1 + t"`
∴ f '(t) = `(-1)/(1 + "t")^2`
∴ `int "e"^"t" ["f"("t") + "f" '("t")]` dt
`= "e"^"t" "f"("t") + "c"`
`= "e"^"t" * 1/(1 + "t")` + c
∴ I = `"x"/(1 + log "x")` + c
उत्तर २
Let I =`int (log x)/(1 + log x)^2` dx
Adding and subtracting 1 from the numerator,
I =`int ((1 + log x) - 1)/(1 + log x)^2` dx
I =`int cancel((1 + log x))/(1 + log x)^cancel2 - int 1/(1 + log x)^2` dx
I =`int 1/(1 + log x) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1) - int 1/(1 + log x)^2` dx
I =`int (1 + log x)^(-1).1 - int 1/(1 + log x)^2` dx
Integration by Parts,
`∫"u"."v" "dx" = "u" ∫"v" "dx" − ∫ [ ∫"v" "dx". "du"/"dx"] "dx"`
`"I" = (1 + log x)^(-1) ∫1 "dx" − ∫ [∫1 "dx". "d"/"dx" (1 + log x)^(-1)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x − ∫[cancelx. (-1)/(cancelx(1 + log x)^2)] "dx" - int 1/(1 + log x)^2 "dx"`
`"I" = (1 + log x)^(-1). x + ∫cancel(1/(1 + log x)^2) - int cancel(1/(1 + log x)^2) + c`
I = `(1 + log x)^(-1). x + c`
I = `x/(1 + log x). + c`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin 3x.
Integrate the function in x tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x tan^-1 x .dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
Solve: `int sqrt(4x^2 + 5)dx`
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx
Evaluate the following.
`intx^3 e^(x^2)dx`