हिंदी

Choose the correct options from the given alternatives : ∫x-sinx1-cosx⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =

विकल्प

  • `x cot (x/2) + c`

  • `- x cot (x/2) + c`

  • `cot (x/2) + c`

  • `x tan (x/2) + c`

MCQ

उत्तर

`- x cot (x/2) + c`

[ Hint : `int (x- sinx)/(1 - cosx)*dx = int (x - 2sin(x/2)cos(x/2))/(2sin^2 (x/2))*dx`

= `(1)/(2) int x"cosec"^2(x/2)*dx - int cot(x/2)*dx`

= `(1)/(2) [x int "cosec"^2 (x/2)*dx - int [d/dx(x) int "cosec"^2(x/2)^(dx)]*dx - int cot(x/2)*dx`

= `(1)/(2)[x{(-cot(x/2))/((1/2))} - int1* (-cot(x/2))/((1/2))*dx - intcot(x/2)*dx`

= `xcot(x/2) + int cot(x/2)*dx - int cot(x/2)*dx`

= `- x cot(x/2) + c`].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.06 | पृष्ठ १४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in x (log x)2.


Integrate the function in `e^x (1/x - 1/x^2)`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int cos(root(3)(x)).dx`


Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Choose the correct options from the given alternatives :

`int (1)/(cosx - cos^2x)*dx` =


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


`int 1/sqrt(2x^2 - 5)  "d"x`


`int ["cosec"(logx)][1 - cot(logx)]  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


Choose the correct alternative:

`int ("d"x)/((x - 8)(x + 7))` =


`int(x + 1/x)^3 dx` = ______.


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


`int(logx)^2dx` equals ______.


If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


Solution of the equation `xdy/dx=y log y` is ______


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`int((1 + sinx)/(1 + cosx))e^x dx`


Evaluate:

`inte^x sinx  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate the following.

`intx^3e^(x^2) dx`


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`int x^3 e^(x^2) dx` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×