Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
उत्तर
Let I = `int "dx"/sqrt(4"x"^2 - 5)`
`= int 1/(sqrt (4("x"^2 - 5/4)))`dx
`= 1/2 int 1/(sqrt("x"^2 - ((sqrt5)/2)^2))` dx
`= 1/2 log |"x" + sqrt("x"^2 - (sqrt5/2)^2)|` + c
∴ I = `1/2 log |"x" + sqrt("x"^2 - 5/4)|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in x tan-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`