Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
उत्तर
Let I = `int "dx"/(3 - 2"x" - "x"^2)`
3 - 2x - x2 = - x2 - 2x + 3
= -(x2 + 2x - 3)
= - (x2 + 2x + 1 - 4)
= - [(x + 1)2 - 4]
= (2)2 - (x + 1)2
∴ I = `int "dx"/((2)^2 - ("x + 1")^2)`
`= 1/(2(2)) log |(2 + "x" + 1)/(2 - ("x + 1"))|` + c
∴ I = `1/4 log |(3 + "x")/(1 - "x")|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in e2x sin x.
Evaluate the following : `int sin θ.log (cos θ).dθ`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int sin4x cos3x "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate `int 1/(x(x - 1)) "d"x`
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int tan^-1x dx`
Evaluate `int (1 + x + x^2/(2!))dx`