हिंदी

Choose the correct options from the given alternatives : ∫tan(sin-1x)⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Choose the correct options from the given alternatives :

tan(sin-1x)dx =

विकल्प

  • (1-x2)-12+c

  • (1-x2)12+c

  • tanmx1-x2+c

  • -1-x2+c

MCQ

उत्तर

-1-x2+c

[Hint:sin-1x=tan-1(x1-x2)].

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १४८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.05 | पृष्ठ १४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

a2-x2dx=x2a2-x2+a22sin-1(xa)+c


1xlogxdx=...............

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x sin 3x.


Integrate the function in x sin-1 x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in (x2 + 1) log x.


Integrate the function in xex(1+x)2.


exsecx(1+  tanx)dx equals:


Evaluate the following : x2.logx.dx


Evaluate the following : xtan-1x.dx


Evaluate the following : x2tan-1x.dx


Evaluate the following : x3.tan-1x.dx


Evaluate the following:

sec3x.dx


Evaluate the following : e2x.cos3x.dx


Evaluate the following: x.sin-1x.dx


Integrate the following functions w.r.t. x : 5x2+3


Integrate the following functions w.r.t. x : 4x(4x+4)


Integrate the following functions w.r.t. x : ex.(1x-1x2)


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

1x+x5dx = f(x) + c, then x4x+x5dx =


Choose the correct options from the given alternatives :

1cosx-cos2xdx =


Choose the correct options from the given alternatives :

sin(logx)dx =


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : log (x2 + 1)


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

x2e4xdx


Evaluate the following.

ex(1x-1x2)dx


Evaluate the following.

ex[(logx)2+2logxx] dx


Evaluate the following.

logx(1+logx)2 dx


Choose the correct alternative from the following.

(x3+3x2+3x+1)(x + 1)5 dx


Evaluate: Find the primitive of 11+ex


Evaluate: dx4x2-5


Evaluate: dx3-2x-x2


Evaluate: dxx[(logx)2+4logx-1]


sinx1+sinx dx


sin(x-a)cos(x+b) dx


sin4xcos3x dx


Evaluate 2x+1(x+1)(x-2) dx


exx(x+1)2 dx


[logx-11+(logx)2]2dx = ?


0axa-xdx = ____________.


logx[log(ex)]-2 dx = ?


ex[2-sin2x1-cos2x]dx = ______.


Evaluate the following:

01xlog(1+2x) dx


State whether the following statement is true or false.

If 4ex-252ex-5 dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


1x2-a2dx = ______.


Solve: 4x2+5dx


(logx)2dx equals ______.


ex[2+sin2x1+cos2x]dx = ______.


01xtan-1x dx = ______.


Find: ex2(x5+2x3)dx.


1x2-a2dx = ______


Solution of the equation xdydx=ylogy is ______


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

dydx=x2+y22xy                      ...(1)

Puty = vx

dydx=

∴ equation (1) becomes

xdvdx=

 dv=dxx

On integrating, we get

2v1-v2dv=dxx

-log|1-v2|=log|x|+c1

log|x|+log|1-v2|=logc    ...[where-c1=logc]

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is = cx


f(x)f(x)dx=2f(x)+c


Evaluate the following.

x31+x4dx


Evaluate:

(logx)2dx


The value of ex(1+sinx1+cosx)dx is ______.


Evaluate:

sin(x-a)sin(x+a)dx


If u and v are two differentiable functions of x, then prove that uvdx=uv dx-(ddxu)(v dx)dx. Hence evaluate: xcosx dx


Complete the following activity:

02dx4+x-x2

= 02dx-x2++

= 02dx-x2+x+14-+4

= 02dx(x-12)2-()2

= 117log(20+41720-417)


Evaluate the following.

x3ex2dx


Evaluate (1+x+x22!)dx


Evaluate the following. 

x1+x2 dx  


Evaluate the following.

x3ex2dx 


The value of ax.exdx equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.