हिंदी

Solve: ∫4x2+5dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Solve: `int sqrt(4x^2 + 5)dx`

योग

उत्तर

`int sqrt(4x^2 + 5).dx = int sqrt((x^2 + 5/4)).dx`

= `2int sqrt(x^2 + 5/4).dx`

= `2int sqrt(x^2 + (sqrt(5)/2)^2).dx`

= `2[x/2 sqrt(x^2 + 5/4) + (5/4)/2 log|x + sqrt(x^2 + 5/4)|] + c_1`

∵ `int sqrt(x^2 + a^2).dx = x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c`

 = `xsqrt(x^2 + 5/4) + 5/4 log|x + sqrt(x^2 + 5/4)| + c_1`

= `x/2 sqrt(4x^2 + 5) + 5/4 log|x + sqrt((4x^2 + 5)/2)| + c_1`

= `x/2 sqrt(4x^2 + 5) + 5/4 log|(2x + sqrt(4x^2 + 5))/2| + c_1`

= `x/2 sqrt(4x^2 + 5) + 5/4 log|2x + sqrt(4x^2 + 5)| - 5/4 log 2 + c`

= `x/2 sqrt(4x^2 + 5) + 5/4 log|2x + sqrt(4x^2 + 5)| + c_1`

Where c = c1 – `5/4` log2, a constant.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2024-2025 (March) Model set 2 by shaalaa.com

संबंधित प्रश्न

Integrate the function in `x^2e^x`.


Integrate the function in x sec2 x.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in e2x sin x.


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int (sinx)/(1 + sin x)  "d"x`


`int sin4x cos3x  "d"x`


State whether the following statement is True or False:

If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1|  + B log|x – 2|, then A + B = 1


Evaluate `int 1/(x(x - 1))  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Find `int_0^1 x(tan^-1x)  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.


`int(1-x)^-2 dx` = ______


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×