Advertisements
Advertisements
प्रश्न
Solve: `int sqrt(4x^2 + 5)dx`
उत्तर
`int sqrt(4x^2 + 5).dx = int sqrt((x^2 + 5/4)).dx`
= `2int sqrt(x^2 + 5/4).dx`
= `2int sqrt(x^2 + (sqrt(5)/2)^2).dx`
= `2[x/2 sqrt(x^2 + 5/4) + (5/4)/2 log|x + sqrt(x^2 + 5/4)|] + c_1`
∵ `int sqrt(x^2 + a^2).dx = x/2 sqrt(x^2 + a^2) + a^2/2 log|x + sqrt(x^2 + a^2)| + c`
= `xsqrt(x^2 + 5/4) + 5/4 log|x + sqrt(x^2 + 5/4)| + c_1`
= `x/2 sqrt(4x^2 + 5) + 5/4 log|x + sqrt((4x^2 + 5)/2)| + c_1`
= `x/2 sqrt(4x^2 + 5) + 5/4 log|(2x + sqrt(4x^2 + 5))/2| + c_1`
= `x/2 sqrt(4x^2 + 5) + 5/4 log|2x + sqrt(4x^2 + 5)| - 5/4 log 2 + c`
= `x/2 sqrt(4x^2 + 5) + 5/4 log|2x + sqrt(4x^2 + 5)| + c_1`
Where c = c1 – `5/4` log2, a constant.
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in x sec2 x.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in e2x sin x.
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Evaluate: `int "dx"/(5 - 16"x"^2)`
`int (sinx)/(1 + sin x) "d"x`
`int sin4x cos3x "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int 1/(x(x - 1)) "d"x`
`int logx/(1 + logx)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
Find `int_0^1 x(tan^-1x) "d"x`
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int(1-x)^-2 dx` = ______
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`