Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
विकल्प
`"e"^"x" - 1/(3"e"^"3x")` + c
`"e"^"x" + 1/(3"e"^"3x")` + c
`"e"^"-x" + 1/(3"e"^"3x")` + c
`"e"^"-x" + 1/(3"e"^"3x") + "c"`
उत्तर
`"e"^"x" - 1/(3"e"^"3x")` + c
Explanation:
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx" = int ("e"^"x" + "e"^(-3"x"))` dx
`= "e"^"x" - 1/3 "e"^(-3"x") + "c"`
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate the following.
`intx^2e^(4x)dx`