Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
विकल्प
`(1 + "x")^-1` + c
`(1 - "x")^-1` + c
`(1 - "x")^-1 - 1` + c
`(1 - "x")^-1 + 1` + c
उत्तर
`(1 - "x")^-1` + c
Explanation:
`int (1 - "x")^(-2) "dx" = (1 - "x")^-1/(- 1 xx -1)` + c
`= (1 - "x")^-1` + c
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(x^2 - a^2)dx = x/2sqrt(x^2 - a^2) - a^2/2log|x + sqrt(x^2 - a^2)| + c`
Integrate the function in x sin 3x.
Integrate the function in x log x.
Integrate the function in (sin-1x)2.
Integrate the function in e2x sin x.
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (log x)+(log x)–2
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
Solve: `int sqrt(4x^2 + 5)dx`
If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Evaluate the following.
`intx^3 e^(x^2) dx`