हिंदी

D∫tan-1x dx is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

`int tan^-1 sqrt(x)  "d"x` is equal to ______.

विकल्प

  • `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

  • `x tan^-1 sqrt(x) - sqrt(x) + "C"`

  • `sqrt(x) - x tan^-1 sqrt(x) + "C"`

  • `sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`

MCQ
रिक्त स्थान भरें

उत्तर

`int tan^-1 sqrt(x)  "d"x` is equal to `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`.

Explanation:

Let I = `int 1 * tan^-1 sqrt(x)  "d"x`

= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1  sqrt(x))"'" int 1"d"x]"d"x`

= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x`  ....[Integrating by parrts]

= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`

Put x = t2

⇒ dx = 2t dt

∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`

= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`

= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`

= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`

= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६७]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 50 | पृष्ठ १६७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate : sec3 x w. r. t. x.


Integrate the function in x cos-1 x.


Integrate the function in tan-1 x.


`int e^x sec x (1 +   tan x) dx` equals:


Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Choose the correct options from the given alternatives :

`int [sin (log x) + cos (log x)]*dx` =


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


`int ("d"x)/(x - x^2)` = ______


`int(x + 1/x)^3 dx` = ______.


`int log x * [log ("e"x)]^-2` dx = ?


The value of `int "e"^(5x) (1/x - 1/(5x^2))  "d"x` is ______.


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x))  dx` is


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - 9) dx` = ______.


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


`inte^(xloga).e^x dx` is ______


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate `int (1 + x + x^2/(2!))dx`


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×