Advertisements
Advertisements
प्रश्न
`int tan^-1 sqrt(x) "d"x` is equal to ______.
विकल्प
`(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
`x tan^-1 sqrt(x) - sqrt(x) + "C"`
`sqrt(x) - x tan^-1 sqrt(x) + "C"`
`sqrt(x) - (x + 1) tan^-1 sqrt(x) + "C"`
उत्तर
`int tan^-1 sqrt(x) "d"x` is equal to `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`.
Explanation:
Let I = `int 1 * tan^-1 sqrt(x) "d"x`
= `tan^-1 sqrt(x) int 1 "d"x - int[(tan^-1 sqrt(x))"'" int 1"d"x]"d"x`
= `tan^-1 sqrt(x) * x - int 1/(1 + x) * 1/(2sqrt(x)) * x"d"x` ....[Integrating by parrts]
= `xtan^-1 sqrt(x) - 1/2 int sqrt(x)/(1 + x) "d"x`
Put x = t2
⇒ dx = 2t dt
∴ I = `xtan^-1 sqrt(x) - int "t"^2/(1 + "t"^2) "d"x`
= `xtan^-1 sqrt(x) - int (1 - 1/(1 + "t"^2))"dt"`
= `xtan^-1 sqrt(x) - "t" + tan^-1 1 + "C"`
= `xtan^-1 sqrt(x) - sqrt(x) + tan^-1 sqrt(x) + "C"`
= `(x + 1) tan^-1 sqrt(x) - sqrt(x) + "C"`
APPEARS IN
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in x cos-1 x.
Integrate the function in tan-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
`int ("d"x)/(x - x^2)` = ______
`int(x + 1/x)^3 dx` = ______.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int_0^1 x tan^-1 x dx` = ______.
`inte^(xloga).e^x dx` is ______
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate `int (1 + x + x^2/(2!))dx`
If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.
Evaluate `int(1 + x + x^2/(2!))dx`.