Advertisements
Advertisements
प्रश्न
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
उत्तर
Let I = `int 1/(1 + "e"^"x")`dx
Dividing Nr. and Dr. by ex, we get
I = `int "e"^-"x"/("e"^-"x" + 1)` dx
Put `"e"^-"x" + 1` = t
∴ `- "e"^-"x" "dx" = "dt"`
∴ `"e"^-"x" "dx" = - "dt"`
∴ I = `int (- "dt")/"t" = - log |"t"| + "c"`
∴ I = - log `|"e"^-"x" + 1|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in (sin-1x)2.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Choose the correct options from the given alternatives :
`int (1)/(cosx - cos^2x)*dx` =
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Evaluate: `int "dx"/("9x"^2 - 25)`
`int 1/sqrt(2x^2 - 5) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
`int logx/(1 + logx)^2 "d"x`
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate the following.
`intx^3 e^(x^2) dx`