Advertisements
Advertisements
प्रश्न
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
उत्तर
Let `I = ((x - 3) e^x)/(x - 1)^3 dx`
`= int (e^x (x - 1 - 2))/(x - 1)^3 dx`
`= int e^x [1/((x - 1)^2) - 2/((x - 1)^3)] dx`
On substituting `e^x . 1/((x - 1)^2) = t`
`[e^x - 2 (x - 1)^-3 + 1/((x - 1)^2). e^x] dx = dt`
or `e^x [1/((x - 1)^2) - 2/(x - 1)^3] dx = dt`
Hence, `I = int 1. dt = t + C`
`= e^x/((x - 1)^2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in `x^2e^x`.
Integrate the function in x log 2x.
Integrate the function in x sin-1 x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following:
`int sec^3x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(5x^2 + 3)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
`int 1/(4x + 5x^(-11)) "d"x`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
`int(logx)^2dx` equals ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
`int1/sqrt(x^2 - a^2) dx` = ______
`intsqrt(1+x) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx