हिंदी

Integrate the function in x2ex. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in `x^2e^x`.

योग

उत्तर

Let `I = int x^2 e^x dx`

Put u = x2, v = ex 

`int uv  dx = u int v  dx - int( (du)/dx int v  dx) dx`

`= x^2 int e^x dx - int (2x).e^x dx`

`= x^2 e^x - 2 int xe^x dx`

We define the first function by integrating multiple parts.

`I = x^2 e^x - 2 [x int e^x  dx - int (d/dx  x. int e^x  dx)]`

`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`

`= x^2 e^x - 2x  e^x + 2e^x + C`

`= e^x (x^2 - 2x + 2) + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.6 | Q 3 | पृष्ठ ३२७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in x tan-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int logx/x.dx`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ("d"x)/(x - x^2)` = ______


Evaluate `int 1/(x(x - 1))  "d"x`


Evaluate `int 1/(4x^2 - 1)  "d"x`


∫ log x · (log x + 2) dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


`int(1-x)^-2 dx` = ______


`inte^(xloga).e^x dx` is ______


Evaluate:

`int e^(logcosx)dx`


Evaluate:

`int (logx)^2 dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)  dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×