Advertisements
Advertisements
प्रश्न
Integrate the function in `x^2e^x`.
उत्तर
Let `I = int x^2 e^x dx`
Put u = x2, v = ex
`int uv dx = u int v dx - int( (du)/dx int v dx) dx`
`= x^2 int e^x dx - int (2x).e^x dx`
`= x^2 e^x - 2 int xe^x dx`
We define the first function by integrating multiple parts.
`I = x^2 e^x - 2 [x int e^x dx - int (d/dx x. int e^x dx)]`
`= x^2 e^x - 2 [xe^x - 2 int 1.e^x dx]`
`= x^2 e^x - 2x e^x + 2e^x + C`
`= e^x (x^2 - 2x + 2) + C`
APPEARS IN
संबंधित प्रश्न
Integrate the function in x sin x.
Integrate the function in x sin 3x.
Integrate the function in x tan-1 x.
Integrate the function in (sin-1x)2.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int sin (log x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("d"x)/(x - x^2)` = ______
Evaluate `int 1/(x(x - 1)) "d"x`
Evaluate `int 1/(4x^2 - 1) "d"x`
∫ log x · (log x + 2) dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
Evaluate the following:
`int_0^pi x log sin x "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
`int(1-x)^-2 dx` = ______
`inte^(xloga).e^x dx` is ______
Evaluate:
`int e^(logcosx)dx`
Evaluate:
`int (logx)^2 dx`
Evaluate the following:
`intx^3e^(x^2)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^2e^(4x)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.
Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3) dx`