Advertisements
Advertisements
प्रश्न
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
उत्तर
Let I = `int (3- 2sinx)/(cos^2x)*dx`
= `int(3/(cos^2x) - (2sinx)/(cos^2x))*dx`
= `3 int sec^2x*dx - 2int sec x tanx*dx`
= 3 tan x – 2 sec x + c.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x log 2x.
Integrate the function in x2 log x.
Integrate the function in (sin-1x)2.
Integrate the function in tan-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
Evaluate: `int "dx"/("9x"^2 - 25)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
Choose the correct alternative:
`intx^(2)3^(x^3) "d"x` =
`int"e"^(4x - 3) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Evaluate `int 1/(4x^2 - 1) "d"x`
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
Evaluate the following:
`int_0^1 x log(1 + 2x) "d"x`
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
`int 1/sqrt(x^2 - 9) dx` = ______.
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.
Solution: (x2 + y2) dx - 2xy dy = 0
∴ `dy/dx=(x^2+y^2)/(2xy)` ...(1)
Puty = vx
∴ `dy/dx=square`
∴ equation (1) becomes
`x(dv)/dx = square`
∴ `square dv = dx/x`
On integrating, we get
`int(2v)/(1-v^2) dv =intdx/x`
∴ `-log|1-v^2|=log|x|+c_1`
∴ `log|x| + log|1-v^2|=logc ...["where" - c_1 = log c]`
∴ x(1 - v2) = c
By putting the value of v, the general solution of the D.E. is `square`= cx
`int(xe^x)/((1+x)^2) dx` = ______
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`int (logx)^2 dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate `int tan^-1x dx`
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intx^2e^(4x)dx`
The value of `inta^x.e^x dx` equals