Advertisements
Advertisements
प्रश्न
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.
विकल्प
`sin("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "a"))/(sin(x - "b"))| + "C"`
`"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
`sin("b" - "a")log|(sin("x" - "a"))/(sin(x - "b"))| + "C"`
उत्तर
`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
Explanation:
Let I = `int "dx"/(sin(x - "a")sin(x - "b"))`
Multiplying and dividing by sin(b – a) we get,
I = `1/(sin("b" - "a")) int (sin("b" - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x + "b" - x - "a"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin[(x - "a") - (x - "b")])/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") cos(x - "b") - cos(x - "a") sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int (sin(x - "a") * cos(x - "b"))/(sin(x - "a")*sin(x - "b")) - (cos(x - "a")*sin(x - "b"))/(sin(x - "a") * sin(x - "b")) "d"x`
= `1/(sin("b" - "a")) int [(cos(x - "b"))/(sin(x - "b")) - (cos(x - "a"))/(sin(x - "a"))]"d"x`
= `1/(sin("b" - "a")) int [cot(x - "b") - cot(x - "a")]"d"x`
= `1/(sin("b" - "a")) [log sin(x - "b") - logsin(x - "a")] + "C"`
= `1/(sin("b" - "a")) * log|(sin(x - "b"))/(sin(x - "a"))| + "C"`
I = `"cosec"("b" - "a") log|(sin(x - "b"))/(sin(x - "a"))| + "C"`.
APPEARS IN
संबंधित प्रश्न
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Integrate the function in x sin x.
Integrate the function in `x^2e^x`.
Integrate the function in x tan-1 x.
`intx^2 e^(x^3) dx` equals:
Evaluate the following : `int x tan^-1 x .dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t.x:
`e^-x cos2x`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
`int(x + 1/x)^3 dx` = ______.
`int log x * [log ("e"x)]^-2` dx = ?
Find `int_0^1 x(tan^-1x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate:
`int (logx)^2 dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)