हिंदी

Integrate the following functions w.r.t. x : e-xcos2x - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t.x:

`e^-x cos2x`

योग

उत्तर

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

I = `cos 2x. (e^-x)/(d/dx (-x)) – int(e^-x)/(d/dx (- x)). (- sin 2x. d/dx 2x) dx`

I = `- cos 2x. e^-x  – int (- e^(-x)) . (- 2sin 2x) dx`

I = `- cos 2x. e^-x  –  2 int e^(-x). sin 2x  dx`

I = `- cos 2x. e^-x - 2 [sin 2x. int e^-x dx - int int e^(-x) dx. d/dx sin 2x. dx]`

I = `- cos 2x. e^-x - 2 sin 2x. (e^-x)/(- 1) + 2 int  (e^-x)/(- 1). cos 2x. 2. dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 2 int  2. e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4 int  e^(-x). cos 2x.dx`

I = `- cos 2x. e^-x + 2 sin 2x. (e^-x) - 4I`

I + 4I = `- cos 2x. e^-x + 2 sin 2x. (e^-x)`

5I = `e^-x (2. sin 2x - cos 2x)`

I = `e^-x/5  (2. sin 2x - cos 2x) + C`

shaalaa.com

Notes

Let I = `int e^-x cos 2x.dx`

∫ uv dx = u ∫ v dx – ∫ (u' ∫ v dx) dx.

I = `cos 2x int e^-x  dx  – int int e^(-x). d/dx cos 2x. dx`

  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Exercise 3.3 | Q 2.02 | पृष्ठ १३८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Prove that:

`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`


If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x sin x.


Integrate the function in x sin 3x.


Integrate the function in `x^2e^x`.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


Integrate the function in (sin-1x)2.


Integrate the function in ex (sinx + cosx).


Integrate the function in `(xe^x)/(1+x)^2`.


Integrate the function in e2x sin x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`


Integrate the following functions w.r.t.x:

`e^(5x).[(5x.logx + 1)/x]`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : cot–1 (1 – x + x2)


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


Evaluate: ∫ (log x)2 dx


`int 1/x  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.


`int cot "x".log [log (sin "x")] "dx"` = ____________.


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


Evaluate the following:

`int_0^pi x log sin x "d"x`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find `int (sin^-1x)/(1 - x^2)^(3//2) dx`.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`


`inte^(xloga).e^x dx` is ______


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`inte^x sinx  dx`


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Evaluate `int tan^-1x  dx`


Evaluate:

`int (sin(x - a))/(sin(x + a))dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following.

`intx^3 e^(x^2) dx`


Evaluate:

`int x^2 cos x  dx`


The value of `inta^x.e^x dx` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×