Advertisements
Advertisements
प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
उत्तर
Let I = `int sqrt(a^2 - x^2) dx`
= `int sqrt(a^2 - x^2)*1 dx`
= `sqrt(a^2 - x^2)* int 1 dx - int [d/dx (sqrt(a^2 - x^2))* int 1 dx]dx`
= `sqrt(a^2 - x^2)*x - int [1/(2sqrt(a^2 - x^2))*d/dx (a^2 - x^2)*x]dx`
= `sqrt(a^2 - x^2)*x - int 1/(2sqrt(a^2 - x^2))(0 - 2x)*x dx`
= `sqrt(a^2 - x^2)*x - int (-x)/sqrt(a^2 - x^2)*x dx`
= `xsqrt(a^2 - x^2) - int (a^2 - x^2 - a^2)/sqrt(a^2 - x^2)dx`
= `xsqrt(a^2 - x^2) - int sqrt(a^2 - x^2)dx + a^2 int dx/sqrt(a^2 - x^2)`
= `xsqrt(a^2 - x^2) - I + a^2sin^-1(x/a) + c_1`
∴ 2I = `xsqrt(a^2 - x^2) + a^2sin^-1(x/a) + c_1`
∴ I = `x/2 sqrt(a^2 - x^2) + a^2/2 sin^-1(x/a) + c_1/2`
∴ `int sqrt(a^2 - x^2)dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a) + c`,
where c = `c_1/2`
APPEARS IN
संबंधित प्रश्न
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x cos-1 x.
Integrate the function in tan-1 x.
Integrate the function in x (log x)2.
Integrate the function in (x2 + 1) log x.
Integrate the function in ex (sinx + cosx).
Integrate the function in `(xe^x)/(1+x)^2`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `[x/(x + 1)^2].e^x`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (sin^m x)/(cos^(m+2)x)*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int sqrt(tanx) + sqrt(cotx) "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int log x * [log ("e"x)]^-2` dx = ?
The value of `int "e"^(5x) (1/x - 1/(5x^2)) "d"x` is ______.
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
If u and v ore differentiable functions of x. then prove that:
`int uv dx = u intv dx - int [(du)/(d) intv dx]dx`
Hence evaluate `intlog x dx`
`int 1/sqrt(x^2 - 9) dx` = ______.
`int(logx)^2dx` equals ______.
If `int(x + (cos^-1 3x)^2)/sqrt(1 - 9x^2)dx = 1/α(sqrt(1 - 9x^2) + (cos^-1 3x)^β) + C`, where C is constant of integration , then (α + 3β) is equal to ______.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int1/sqrt(x^2 - a^2) dx` = ______
Solution of the equation `xdy/dx=y log y` is ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`int(1+logx)/(x(3+logx)(2+3logx)) dx`
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
Evaluate:
`inte^x sinx dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate:
`int x^2 cos x dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate:
`inte^x "cosec" x(1 - cot x)dx`