Advertisements
Advertisements
प्रश्न
Evaluate `int (2x + 1)/((x + 1)(x - 2)) "d"x`
उत्तर
Let I = `int (2x + 1)/((x + 1)(x - 2)) "d"x`
Let `(2x + 1)/((x + 1)(x - 2)) = "A"/(x + 1) + "B"/(x - 2)`
∴ 2x + 1 = A(x – 2) + B(x + 1) ......(i)
Putting x = – 1 in (i), we get
2(– 1) + 1 = A(– 1 – 2) + B(0)
∴ – 1 = – 3A
∴ A = `1/3`
Putting x = 2 in (i), we get
2(2) + 1 = A(0) + B(2 + 1)
∴ 5 = 3B
∴ B = `5/3`
∴ `(2x + 1)/((x + 1)(x - 2)) = ((1/3))/(x + 1) + ((5/3))/(x - 2)`
∴ I = `int(((1/3))/(x + 1) + ((5/3))/(x - 2)) "d"x`
= `1/3 int 1/(x + 1) "d"x + 5/3 int 1/(x - 2) "d"x`
∴ I = `1/3 log|x + 1| + 5/3 log|x - 2| + "c"`
संबंधित प्रश्न
Integrate : sec3 x w. r. t. x.
Integrate the function in tan-1 x.
Integrate the function in ex (sinx + cosx).
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int cos(root(3)(x)).dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Choose the correct options from the given alternatives :
`int (log (3x))/(xlog (9x))*dx` =
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
Evaluate the following.
`int (log "x")/(1 + log "x")^2` dx
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
Evaluate: ∫ (log x)2 dx
`int "e"^x x/(x + 1)^2 "d"x`
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int e^x [(2 + sin 2x)/(1 + cos 2x)]dx` = ______.
`intsqrt(1+x) dx` = ______
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate the following.
`intx^3e^(x^2) dx`