Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int "e"^"x" "x"/("x + 1")^2` dx
उत्तर
Let I =`int ("x"/("x + 1")^2) "e"^"x"` dx
`= int "e"^"x" ((("x + 1") - 1)/("x + 1")^2)` dx
`= int "e"^"x"(("x + 1")/("x + 1")^2 - 1/("x + 1")^2)` dx
`= int "e"^"x" (1/("x + 1") - 1/("x + 1")^2)` dx
Put f(x) = `1/("x + 1")`
∴ f '(x) = `(-1)/("x + 1")^2`
∴ I = `int "e"^"x" ["f"("x") + "f" '("x")]` dx
`= "e"^"x" * "f"("x") + "c"`
∴ I = `"e"^"x" (1/("x + 1"))` + c
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Integrate the function in (x2 + 1) log x.
Evaluate the following : `int x^2.log x.dx`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate: Find the primitive of `1/(1 + "e"^"x")`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
`int (x^2 + x - 6)/((x - 2)(x - 1)) "d"x` = x + ______ + c
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
Solution of the equation `xdy/dx=y log y` is ______
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3 e^(x^2)dx`