हिंदी

∫x2+x-6(x-2)(x-1) dx = x + ______ + c - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c

रिक्त स्थान भरें

उत्तर

`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + 4 log|x-1| + c

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 1.5: Integration - Q.2

संबंधित प्रश्न

If u and v are two functions of x then prove that

`intuvdx=uintvdx-int[du/dxintvdx]dx`

Hence evaluate, `int xe^xdx`


Integrate the function in x cos-1 x.


Integrate the function in tan-1 x.


`int e^x sec x (1 +   tan x) dx` equals:


Find : 

`∫(log x)^2 dx`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t.x : `sqrt(x)sec(x^(3/2))*tan(x^(3/2))`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Integrate the following w.r.t.x : log (x2 + 1)


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Evaluate: ∫ (log x)2 dx


`int 1/sqrt(2x^2 - 5)  "d"x`


Evaluate `int 1/(x log x)  "d"x`


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×