हिंदी

Integrate the following w.r.t.x : log (x2 + 1) - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following w.r.t.x : log (x2 + 1)

योग

उत्तर

Let I = `int log (x^2 + 1)*dx`

= `int [log (x^2 + 1)]*1dx`

= `[log(x^2 + 1)] int 1dx - int [d/dx{log (x^2 + 1)} int 1dx]*dx`

= `[log (x^2 + 1)]*x - int 1/(x^2 + 1)*dx (x^2 + 1)*xdx`

= `xlog(x^2 + 1) - int (2x^2)/(x^2 + 1)*dx`

= `xlog (x^2 + 1) - int (2x^2 + 2 - 2)/(x^2 + 1)*dx`

= `xlog(x^2 + 1) - int[(2(x^2 + 1))/(x^2 + 1) - 2/(x^2 + 1)]*dx`

= `xlog(x^2 + 1) - int[2 int 1dx - 2 int 1/(x^2 + 1)*dx]`

= x log (x2 + 1) – 2x + 2 tan–1 x + c.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 3: Indefinite Integration - Miscellaneous Exercise 3 [पृष्ठ १५०]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
अध्याय 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 3.12 | पृष्ठ १५०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following:

`int sec^3x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Evaluate the following : `int x.cos^3x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (sin^m x)/(cos^(m+2)x)*dx` = 


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Choose the correct options from the given alternatives :

`int sin (log x)*dx` =


Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`


Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x"/("x + 1")^2` dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int (cos2x)/(sin^2x cos^2x)  "d"x`


`int sin4x cos3x  "d"x`


`int sqrt(tanx) + sqrt(cotx)  "d"x`


`int ("d"x)/(x - x^2)` = ______


`int 1/x  "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


`int "e"^x x/(x + 1)^2  "d"x`


`int logx/(1 + logx)^2  "d"x`


`int cot "x".log [log (sin "x")] "dx"` = ____________.


`int log x * [log ("e"x)]^-2` dx = ?


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int 1/sqrt(x^2 - a^2)dx` = ______.


The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.


If `int (f(x))/(log(sin x))dx` = log[log sin x] + c, then f(x) is equal to ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


`int(1-x)^-2 dx` = ______


`intsqrt(1+x)  dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate: 

`int(1+logx)/(x(3+logx)(2+3logx))  dx`


`int1/(x+sqrt(x))  dx` = ______


`inte^(xloga).e^x dx` is ______


The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate:

`inte^x sinx  dx`


Evaluate:

`int (logx)^2 dx`


Evaluate the following.

`intx^3  e^(x^2) dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)  dx`


Evaluate the following.

`intx^3e^(x^2) dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following. 

`int x sqrt(1 + x^2)  dx`  


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Evaluate:

`inte^x "cosec"  x(1 - cot x)dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×