Advertisements
Advertisements
प्रश्न
Evaluate the following.
∫ x log x dx
उत्तर
Let I = ∫ x log x dx
`= log "x" int "x" "dx" - int["d"/"dx" (log "x") int "x dx"] "dx"`
`= log "x" * "x"^2/2 - int [1/"x" xx "x"^2/2]` dx
`= "x"^2/2 log "x" - 1/2 int "x dx"`
`= "x"^2/2 log "x" - 1/2 * "x"^2/2 + "c"`
∴ I = `"x"^2/2 log "x" - "x"^2/4 + "c"`
Notes
The answer in the textbook is incorrect.
APPEARS IN
संबंधित प्रश्न
Evaluate the following : `int x^3.tan^-1x.dx`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(2x^2 + 3x + 4)`
Choose the correct options from the given alternatives :
`int [sin (log x) + cos (log x)]*dx` =
Integrate the following with respect to the respective variable : `t^3/(t + 1)^2`
Integrate the following w.r.t.x : log (x2 + 1)
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int ("d"x)/(x - x^2)` = ______
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
`int cot "x".log [log (sin "x")] "dx"` = ____________.
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate:
`intcos^-1(sqrt(x))dx`
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Evaluate the following.
`int x^3 e^(x^2) dx`