Advertisements
Advertisements
प्रश्न
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
उत्तर
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
∴ x2 (1 - y) dy = - y2 (1 + x) dx
∴ `((1-y)/y^2)dy = - ((1+x)/x^2)dx`
Integrating on both sides, we get
`int(1/y^2- 1/y) dy = - int (1/x^2+1/x)dx`
∴ `-1/y - log |y| = - (-1/x + log | x |)+c`
∴`(-1)/y - log |y| = 1/x - log | x |+c`
∴ `log | x | - log | y | = 1/x + 1/y + c`
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int cos sqrt(x).dx`
Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`
Integrate the following functions w.r.t.x:
`e^(5x).[(5x.logx + 1)/x]`
Choose the correct options from the given alternatives :
`int (x- sinx)/(1 - cosx)*dx` =
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int (cos2x)/(sin^2x cos^2x) "d"x`
`int ("d"x)/(x - x^2)` = ______
`int "e"^x x/(x + 1)^2 "d"x`
The value of `int_0^(pi/2) log ((4 + 3 sin x)/(4 + 3 cos x)) dx` is
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
`int1/sqrt(x^2 - a^2) dx` = ______
`int(xe^x)/((1+x)^2) dx` = ______
Evaluate the following.
`intx^3 e^(x^2) dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3 e^(x^2)dx`