हिंदी

Find : ∫ ( Log X ) 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find : 

`∫(log x)^2 dx`

योग

उत्तर

`∫(log x)^2 dx`

let `u = (logx)^2 , "v" = 1`

`∫u."v" dx = u∫"v"dx - ∫[(du)/dx∫"v"dx]dx`

`therefore ∫ (log x)^2 . 1dx = (log x)^2 ∫1dx - ∫[2log x xx 1/x xx xdx]`

 = `x(log|x|^2) - 2∫log x  dx`

`x(log x)^2 - 2(x log|x| - x) + C`

 = `x(log|x|)^2 - 2x log|x| + 2x + C` . 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Integrate the function in x sin 3x.


Integrate the function in x log x.


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t.x:

`e^-x cos2x`


Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`


Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`


Choose the correct options from the given alternatives :

`int (x- sinx)/(1 - cosx)*dx` =


Evaluate the following.

`int (log "x")/(1 + log "x")^2` dx


Evaluate: Find the primitive of `1/(1 + "e"^"x")`


Evaluate: `int "dx"/(5 - 16"x"^2)`


`int 1/(4x + 5x^(-11))  "d"x`


`int"e"^(4x - 3) "d"x` = ______ + c


`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int "dx"/(sin(x - "a")sin(x - "b"))` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Solve the differential equation (x2 + y2) dx - 2xy dy = 0 by completing the following activity.

Solution: (x2 + y2) dx - 2xy dy = 0

∴ `dy/dx=(x^2+y^2)/(2xy)`                      ...(1)

Puty = vx

∴ `dy/dx=square`

∴ equation (1) becomes

`x(dv)/dx = square`

∴ `square  dv = dx/x`

On integrating, we get

`int(2v)/(1-v^2) dv =intdx/x`

∴ `-log|1-v^2|=log|x|+c_1`

∴ `log|x| + log|1-v^2|=logc       ...["where" - c_1 = log c]`

∴ x(1 - v2) = c

By putting the value of v, the general solution of the D.E. is `square`= cx


`int(xe^x)/((1+x)^2)  dx` = ______


Evaluate `int(1 + x + (x^2)/(2!))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If ∫(cot x – cosec2 x)ex dx = ex f(x) + c then f(x) will be ______.


Evaluate the following.

`int x^3 e^(x^2) dx` 


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Evaluate the following.

`intx^2e^(4x)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×