हिंदी

Find : ∫ Sin ( X − a ) Sin ( X + a ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

Find : 

`∫ sin(x-a)/sin(x+a)dx`

योग

उत्तर

`∫ sin(x-a)/sin(x+a)dx`

`I = ∫ sin(x-a)/sin(x+a)dx`

= `∫sin(x-a+a-a)/sin(x+a)dx`

= `∫sin(x+a-2a)/sin(x+a)dx`

= `∫(sin(x+a) cos2a - sin 2acos(x+a))/sin(x+a)dx`

= `∫ cos 2a  dx - ∫ sin 2acot(x+a)dx` 

`I = x cos 2a - sin 2a log |sin(x+a)|+C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/3

संबंधित प्रश्न

Find : `int x^2/(x^4+x^2-2) dx`


Find: `I=intdx/(sinx+sin2x)`


Integrate the rational function:

`(3x + 5)/(x^3 - x^2 - x + 1)`


Integrate the rational function:

`(cos x)/((1-sinx)(2 - sin x))` [Hint: Put sin x = t]


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`


Integrate the following w.r.t.x : `(1)/(2cosx + 3sinx)`


Integrate the following w.r.t.x :  `sec^2x sqrt(7 + 2 tan x - tan^2 x)`


State whether the following statement is True or False.

If `int (("x - 1") "dx")/(("x + 1")("x - 2"))` = A log |x + 1| + B log |x - 2| + c, then A + B = 1.


`int (2x - 7)/sqrt(4x- 1) dx`


If f'(x) = `x - 3/x^3`, f(1) = `11/2` find f(x)


`int 1/(2 +  cosx - sinx)  "d"x`


`int sec^2x sqrt(tan^2x + tanx - 7)  "d"x`


`int ("d"x)/(2 + 3tanx)`


Choose the correct alternative:

`int sqrt(1 + x)  "d"x` =


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate `int x^2"e"^(4x)  "d"x`


Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


Evaluate: `int (dx)/(2 + cos x - sin x)`


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1  x/2 + B tan^-1(x/3) + C`, then A – B = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×