हिंदी

Evaluate the following: ed∫e-3xcos3x dx - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`int "e"^(-3x) cos^3x  "d"x`

योग

उत्तर

Let I = `int "e"^(-3x) cos^3x  "d"x`

= `int "e"^(-3x) ((cos 3x + 3 cosx)/4) "d"x`

= `1/4 int ("e"^(-3x) cos 3x + "e"^(-3x) cos x) "d"x`

= `1/4 ("I"_1 + "I"_2)`

I1 = `int "e"^(-3x) cos 3x "d"x`

= `"e"^(-3x) int cos 3x "d"x - int (("e"^(-3x)) int cos 3x  "d"x) "d"x`

= `"e"^(-3x)  sin  (3x)/3- int - 3"e"^(-3x) sin  (3x)/3 "d"x`

= `"e"^(-3x) sin  (3x)/3 + "e"^(-3x) sin 3x "d"x`

= `"e"^(-3x) sin  (3x)/3 + "e"^(-3x) cos  (3x)/3 - int (("e"^(-3x))"'" int sin 3 x  "d"x)"d"x`

= `"e"^(-3x) sin  (3x)/3 - "e"^(-3x) cos  (3x)/3 - int "e"^(-3x) cos 3x  "d"x`

= `"e"^(-3x) sin  (3x)/3 - "e"^(-3x) cos  (3x)/3 - "I"_1`

⇒ 2I = ("e"^(-3x))/3 (sin 3x - cos 3x)`

⇒ I1 = `("e"^(-3x))/6 (sin 3x - cos 3x) + "C"_1`

Similarly I2 = `int "e"^(-3x) cos x"d"x`

= `("e"^(-3x))/10 (sin 3x - 3 cos 3x) + "C"_2`

 ⇒ I = `1/4 [("e"^(-3x))/6 (sin 3x - cos 3x) + "e"^(-3x)/10 (sin 3x - 3 cos 3x)] + "C"`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise [पृष्ठ १६६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise | Q 42 | पृष्ठ १६६

संबंधित प्रश्न

Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`(3x - 1)/((x - 1)(x - 2)(x - 3))`


Integrate the rational function:

`(2x)/(x^2 + 3x + 2)`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`


Integrate the rational function:

`(2x)/((x^2 + 1)(x^2 + 3))`


Integrate the rational function:

`1/(x(x^4 - 1))`


Find `int(e^x dx)/((e^x - 1)^2 (e^x + 2))`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`


Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`


Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx


`int sqrt(4^x(4^x + 4))  "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int (3x + 4)/sqrt(2x^2 + 2x + 1)  "d"x`


Choose the correct alternative:

`int (x + 2)/(2x^2 + 6x + 5) "d"x = "p"int (4x + 6)/(2x^2 + 6x + 5) "d"x + 1/2 int 1/(2x^2 + 6x + 5)"d"x`, then p = ?


Evaluate `int x log x  "d"x`


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Evaluate`int(5x^2-6x+3)/(2x-3)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×