हिंदी

Integrate the rational function: (x2+1)(x2+2)(x2+3)(x2+4) - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the rational function:

`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`

योग

उत्तर

`((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4))`  Taking x2 = y

`((y + 1)(y + 2))/((y + 3)(y + 4)) = (y^2 + 3y + 2)/(y^2 + 7y + 12)`

`= 1 - (4y + 10)/(y^2 + 7y + 12)`

`= 1 - (4y + 10)/((y + 3)(y + 4))`

Let `(4y + 10)/((y + 3)(y + 4)) = A/((y + 3)) + B/(y + 4)`

4y + 10 = A (y + 4) + B (y + 3)

Putting y = -4 - 6 = 0 - B

⇒ B = 6

Putting y = -3, -2 = A + 0

⇒  A = -2

`therefore ((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4)) = 1 - [(-2)/(y + 3) + 6/(y + 4)]`

`= 1 + 2/(y + 3) + 6/(y + 4)`

`int ((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4))` dx

`= int dx + 2 int 1/(x^2 sqrt(3^2)) + 6 int 1/(x^2 + 4)` dx

`= x + 2/sqrt 3  tan^-1 x/sqrt3 - 6/2  tan^-1 (x/2) + C`

`= x + 2/sqrt 3  tan^-1  x/sqrt3 - 3  tan^-1  x/2 + C`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 7: Integrals - Exercise 7.5 [पृष्ठ ३२३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 7 Integrals
Exercise 7.5 | Q 18 | पृष्ठ ३२३

संबंधित प्रश्न

Integrate the rational function:

`x/((x + 1)(x+ 2))`


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`x/((x -1)^2 (x+ 2))`


Integrate the rational function:

`(5x)/((x + 1)(x^2 - 4))`


Integrate the rational function:

`2/((1-x)(1+x^2))`


Integrate the rational function:

`1/(x(x^4 - 1))`


`int (dx)/(x(x^2 + 1))` equals:


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`


Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`


Integrate the following w.r.t. x : `(1)/(x^3 - 1)`


Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`


Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`


Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`


Integrate the following w.r.t.x:

`x^2/((x - 1)(3x - 1)(3x - 2)`


Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx


Evaluate: `int 1/("x"("x"^"n" + 1))` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


`int (2x - 7)/sqrt(4x- 1) dx`


`int 1/(x(x^3 - 1)) "d"x`


`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`


`int sec^3x  "d"x`


`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int (x + sinx)/(1 - cosx)  "d"x`


`int  x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3))  "d"x`


Choose the correct alternative:

`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =


Evaluate `int x^2"e"^(4x)  "d"x`


If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.


Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.


`int 1/(x^2 + 1)^2 dx` = ______.


If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.


Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`


Evaluate: 

`int 2/((1 - x)(1 + x^2))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×