Advertisements
Advertisements
प्रश्न
Integrate the rational function:
`((x^2 +1)(x^2 + 2))/((x^2 + 3)(x^2+ 4))`
उत्तर
`((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4))` Taking x2 = y
`((y + 1)(y + 2))/((y + 3)(y + 4)) = (y^2 + 3y + 2)/(y^2 + 7y + 12)`
`= 1 - (4y + 10)/(y^2 + 7y + 12)`
`= 1 - (4y + 10)/((y + 3)(y + 4))`
Let `(4y + 10)/((y + 3)(y + 4)) = A/((y + 3)) + B/(y + 4)`
4y + 10 = A (y + 4) + B (y + 3)
Putting y = -4 - 6 = 0 - B
⇒ B = 6
Putting y = -3, -2 = A + 0
⇒ A = -2
`therefore ((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4)) = 1 - [(-2)/(y + 3) + 6/(y + 4)]`
`= 1 + 2/(y + 3) + 6/(y + 4)`
`int ((x^2 + 1)(x^2 + 2))/((x^2 + 3)(x^2 + 4))` dx
`= int dx + 2 int 1/(x^2 sqrt(3^2)) + 6 int 1/(x^2 + 4)` dx
`= x + 2/sqrt 3 tan^-1 x/sqrt3 - 6/2 tan^-1 (x/2) + C`
`= x + 2/sqrt 3 tan^-1 x/sqrt3 - 3 tan^-1 x/2 + C`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`x/((x + 1)(x+ 2))`
Integrate the rational function:
`x/((x^2+1)(x - 1))`
Integrate the rational function:
`x/((x -1)^2 (x+ 2))`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`2/((1-x)(1+x^2))`
Integrate the rational function:
`1/(x(x^4 - 1))`
`int (dx)/(x(x^2 + 1))` equals:
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(12x^2 - 2x - 9)/((4x^2 - 1)(x + 3)`
Integrate the following w.r.t. x : `(3x - 2)/((x + 1)^2(x + 3)`
Integrate the following w.r.t. x : `(1)/(x^3 - 1)`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
Integrate the following w.r.t.x : `x^2/sqrt(1 - x^6)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
Integrate the following w.r.t.x:
`x^2/((x - 1)(3x - 1)(3x - 2)`
Evaluate: `int (2"x" + 1)/(("x + 1")("x - 2"))` dx
Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx
Evaluate: `int "3x - 2"/(("x + 1")^2("x + 3"))` dx
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
For `int ("x - 1")/("x + 1")^3 "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.
`int (2x - 7)/sqrt(4x- 1) dx`
`int 1/(x(x^3 - 1)) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int sec^3x "d"x`
`int "e"^(sin^(-1_x))[(x + sqrt(1 - x^2))/sqrt(1 - x^2)] "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int (x + sinx)/(1 - cosx) "d"x`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Choose the correct alternative:
`int ((x^3 + 3x^2 + 3x + 1))/(x + 1)^5 "d"x` =
Evaluate `int x^2"e"^(4x) "d"x`
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
`int 1/(x^2 + 1)^2 dx` = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`