Advertisements
Advertisements
प्रश्न
Evaluate `int x^2"e"^(4x) "d"x`
उत्तर
Let I = `int x^2*"e"^(4x) "d"x`
= `x^2 int "e"^(4x) "d"x - int ["d"/("d"x)(x^2) int"e"^(4x)"d"x]"d"x`
= `x^2* ("e"^(4x))/4 - int 2x* ("e"^(4x))/4 "d"x`
= `(x^2*"e"^(4x))/4 - 1/2 intx*"e"^(4x)"d"x`
= `(x^2"e"^(4x))/4 - 1/2[x"f""e"^(4x)"d"x - int("d"/("d"x)(x) int"e"^(4x)"d"x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[x* ("e"^(4x))/4 - int 1* ("e"^(4x))/4 "d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x*"e"^(4x))/4 - 1/4 int"e"^(4x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x"e"^(4x))/4 - 1/4*("e"^(4x))/4] + "c"`
= `(x^2"e"^(4x))/4 - (x"e"^(4x))/8 + ("e"^(4x))/32 + "c"`
∴ I = `("e"^(4x))/4[x^2 - x/2 + 1/8] + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Find :
`∫ sin(x-a)/sin(x+a)dx`
Integrate the following w.r.t. x : `(1)/(x(1 + 4x^3 + 3x^6)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(1)/(sinx + sin2x)`
Evaluate: `int 1/("x"("x"^"n" + 1))` dx
Evaluate: `int (5"x"^2 + 20"x" + 6)/("x"^3 + 2"x"^2 + "x")` dx
`int sec^3x "d"x`
`int ("d"x)/(x^3 - 1)`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
Evaluate: `int (dx)/(2 + cos x - sin x)`
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.
If `intsqrt((x - 5)/(x - 7))dx = Asqrt(x^2 - 12x + 35) + log|x| - 6 + sqrt(x^2 - 12x + 35) + C|`, then A = ______.
Evaluate: `int (2x^2 - 3)/((x^2 - 5)(x^2 + 4))dx`
Find : `int (2x^2 + 3)/(x^2(x^2 + 9))dx; x ≠ 0`.
Evaluate:
`int 2/((1 - x)(1 + x^2))dx`