Advertisements
Advertisements
Question
Evaluate `int x^2"e"^(4x) "d"x`
Solution
Let I = `int x^2*"e"^(4x) "d"x`
= `x^2 int "e"^(4x) "d"x - int ["d"/("d"x)(x^2) int"e"^(4x)"d"x]"d"x`
= `x^2* ("e"^(4x))/4 - int 2x* ("e"^(4x))/4 "d"x`
= `(x^2*"e"^(4x))/4 - 1/2 intx*"e"^(4x)"d"x`
= `(x^2"e"^(4x))/4 - 1/2[x"f""e"^(4x)"d"x - int("d"/("d"x)(x) int"e"^(4x)"d"x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[x* ("e"^(4x))/4 - int 1* ("e"^(4x))/4 "d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x*"e"^(4x))/4 - 1/4 int"e"^(4x)"d"x]`
= `(x^2"e"^(4x))/4 - 1/2[(x"e"^(4x))/4 - 1/4*("e"^(4x))/4] + "c"`
= `(x^2"e"^(4x))/4 - (x"e"^(4x))/8 + ("e"^(4x))/32 + "c"`
∴ I = `("e"^(4x))/4[x^2 - x/2 + 1/8] + "c"`
APPEARS IN
RELATED QUESTIONS
Integrate the rational function:
`1/(x^2 - 9)`
Integrate the rational function:
`(5x)/((x + 1)(x^2 - 4))`
Integrate the rational function:
`(2x)/((x^2 + 1)(x^2 + 3))`
`int (xdx)/((x - 1)(x - 2))` equals:
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t. x : `(2log x + 3)/(x(3 log x + 2)[(logx)^2 + 1]`
Integrate the following with respect to the respective variable : `(6x + 5)^(3/2)`
`int "e"^(3logx) (x^4 + 1)^(-1) "d"x`
`int (7 + 4x + 5x^2)/(2x + 3)^(3/2) dx`
`int 1/(2 + cosx - sinx) "d"x`
`int (3x + 4)/sqrt(2x^2 + 2x + 1) "d"x`
`int x^3tan^(-1)x "d"x`
Choose the correct alternative:
`int sqrt(1 + x) "d"x` =
Evaluate `int (2"e"^x + 5)/(2"e"^x + 1) "d"x`
Evaluate the following:
`int x^2/(1 - x^4) "d"x` put x2 = t
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
Evaluate the following:
`int sqrt(tanx) "d"x` (Hint: Put tanx = t2)
Let g : (0, ∞) `rightarrow` R be a differentiable function such that `int((x(cosx - sinx))/(e^x + 1) + (g(x)(e^x + 1 - xe^x))/(e^x + 1)^2)dx = (xg(x))/(e^x + 1) + c`, for all x > 0, where c is an arbitrary constant. Then ______.
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.
Find: `int x^4/((x - 1)(x^2 + 1))dx`.