English

Evaluate the following: b∫bπ x1+sinx - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`int_"0"^pi  (x"d"x)/(1 + sin x)`

Sum

Solution

Let I = `int_"0"^pi  (x"d"x)/(1 + sin x)`  .....(i)

= `int_0^pi (pi - x)/(1 + sin(pi - x)) "d"x`  ......`["Using"  int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`

= `int_0^pi (pi - x)/(1 + sinx)  "d"x`  ......(ii)

Adding (i) and (ii), we get

2I = `int_0^pi (x/(1 + sinx) + (pi - x)/(1 + sinx)) "d"x`

= `int_0^pi ((x + pi - x)/(1 + sinx))"d"x`

= `int_0^pi  pi/(1 + sin x) "d"x`

= `pi  int_0^pi  1/(1 + sinx) "d"x` 

= `pi  int_0^pi  (1.(1 - sinx))/((1 + sinx)(1 - sinx)) "d"x`

= `pi int_0^pi (1 - sinx)/(1 - sin^2x) "d"x`

= `pi int_0^pi (1 - sinx)/(cos^x) "d"x`

= `pi int_0^pi (1/(cos^2x) - sinx/(cos^2x))"d"x`

= `pi int_0^pi (sec^2x - secx tanx)"d"x`

= `pi[tanx - sec]_0^pi`

= `pi[tan pi - tan 0) - (sec pi - sec 0)]`

2I = `pi[0 - (-1 - 1)`

= `pi`(2)

∴ I = `pi`

Hence, I = `pi`

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Integrals - Exercise [Page 165]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 7 Integrals
Exercise | Q 37 | Page 165

RELATED QUESTIONS

Find: `I=intdx/(sinx+sin2x)`


Evaluate: `∫8/((x+2)(x^2+4))dx` 


Integrate the rational function:

`x/((x^2+1)(x - 1))`


Integrate the rational function:

`1/(x^4 - 1)`


Integrate the rational function:

`1/(x(x^n + 1))` [Hint: multiply numerator and denominator by xn − 1 and put xn = t]


Find : 

`∫ sin(x-a)/sin(x+a)dx`


Integrate the following w.r.t. x : `(2x)/((2 + x^2)(3 + x^2)`


Integrate the following w.r.t. x : `(5*e^x)/((e^x + 1)(e^(2x) + 9)`


Integrate the following w.r.t. x: `(x^2 + 3)/((x^2 - 1)(x^2 - 2)`


Integrate the following with respect to the respective variable : `(cos 7x - cos8x)/(1 + 2 cos 5x)`


Integrate the following w.r.t.x : `(1)/(sinx + sin2x)`


Evaluate: `int "x"/(("x - 1")^2("x + 2"))` dx


Evaluate: `int 1/("x"("x"^5 + 1))` dx


For `int ("x - 1")/("x + 1")^3  "e"^"x" "dx" = "e"^"x"` f(x) + c, f(x) = (x + 1)2.


Evaluate: `int (1 + log "x")/("x"(3 + log "x")(2 + 3 log "x"))` dx


`int 1/(x(x^3 - 1)) "d"x`


`int sec^3x  "d"x`


`int (x^2 + x -1)/(x^2 + x - 6)  "d"x`


`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1)  "d"x`


`int ("d"x)/(2 + 3tanx)`


`int 1/(sinx(3 + 2cosx))  "d"x`


`int xcos^3x  "d"x`


`int  ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1])  "d"x`


`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c


Evaluate the following:

`int x^2/(1 - x^4) "d"x` put x2 = t


Evaluate the following:

`int (x^2 "d"x)/((x^2 + "a"^2)(x^2 + "b"^2))`


Evaluate the following:

`int sqrt(tanx)  "d"x`  (Hint: Put tanx = t2)


If `int dx/sqrt(16 - 9x^2)` = A sin–1 (Bx) + C then A + B = ______.


Find: `int x^4/((x - 1)(x^2 + 1))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×