Advertisements
Advertisements
प्रश्न
Evaluate the following:
`int_"0"^pi (x"d"x)/(1 + sin x)`
उत्तर
Let I = `int_"0"^pi (x"d"x)/(1 + sin x)` .....(i)
= `int_0^pi (pi - x)/(1 + sin(pi - x)) "d"x` ......`["Using" int_0^"a" "f"(x) "d"x = int_0^"a" "f"("a" - x)"d"x]`
= `int_0^pi (pi - x)/(1 + sinx) "d"x` ......(ii)
Adding (i) and (ii), we get
2I = `int_0^pi (x/(1 + sinx) + (pi - x)/(1 + sinx)) "d"x`
= `int_0^pi ((x + pi - x)/(1 + sinx))"d"x`
= `int_0^pi pi/(1 + sin x) "d"x`
= `pi int_0^pi 1/(1 + sinx) "d"x`
= `pi int_0^pi (1.(1 - sinx))/((1 + sinx)(1 - sinx)) "d"x`
= `pi int_0^pi (1 - sinx)/(1 - sin^2x) "d"x`
= `pi int_0^pi (1 - sinx)/(cos^x) "d"x`
= `pi int_0^pi (1/(cos^2x) - sinx/(cos^2x))"d"x`
= `pi int_0^pi (sec^2x - secx tanx)"d"x`
= `pi[tanx - sec]_0^pi`
= `pi[tan pi - tan 0) - (sec pi - sec 0)]`
2I = `pi[0 - (-1 - 1)`
= `pi`(2)
∴ I = `pi`
Hence, I = `pi`
APPEARS IN
संबंधित प्रश्न
Integrate the rational function:
`(2x)/(x^2 + 3x + 2)`
Integrate the rational function:
`(1 - x^2)/(x(1-2x))`
Integrate the rational function:
`1/(x(x^4 - 1))`
Evaluate : `∫(x+1)/((x+2)(x+3))dx`
Integrate the following w.r.t. x : `(5x^2 + 20x + 6)/(x^3 + 2x ^2 + x)`
Integrate the following w.r.t. x : `((3sin - 2)*cosx)/(5 - 4sin x - cos^2x)`
Integrate the following w.r.t.x : `(1)/((1 - cos4x)(3 - cot2x)`
`int "dx"/(("x" - 8)("x" + 7))`=
Evaluate: `int ("3x" - 1)/("2x"^2 - "x" - 1)` dx
`int x^2sqrt("a"^2 - x^6) "d"x`
`int sqrt(4^x(4^x + 4)) "d"x`
`int 1/(x(x^3 - 1)) "d"x`
`int sec^2x sqrt(tan^2x + tanx - 7) "d"x`
`int "e"^x ((1 + x^2))/(1 + x)^2 "d"x`
`int (6x^3 + 5x^2 - 7)/(3x^2 - 2x - 1) "d"x`
`int ("d"x)/(2 + 3tanx)`
`int x^2/((x^2 + 1)(x^2 - 2)(x^2 + 3)) "d"x`
Evaluate:
`int (5e^x)/((e^x + 1)(e^(2x) + 9)) dx`
`int xcos^3x "d"x`
`int (sin2x)/(3sin^4x - 4sin^2x + 1) "d"x`
`int (3"e"^(2x) + 5)/(4"e"^(2x) - 5) "d"x`
`int ((2logx + 3))/(x(3logx + 2)[(logx)^2 + 1]) "d"x`
`int (5(x^6 + 1))/(x^2 + 1) "d"x` = x5 – ______ x3 + 5x + c
State whether the following statement is True or False:
For `int (x - 1)/(x + 1)^3 "e"^x"d"x` = ex f(x) + c, f(x) = (x + 1)2
If `int "dx"/((x + 2)(x^2 + 1)) = "a"log|1 + x^2| + "b" tan^-1x + 1/5 log|x + 2| + "C"`, then ______.
If f(x) = `int(3x - 1)x(x + 1)(18x^11 + 15x^10 - 10x^9)^(1/6)dx`, where f(0) = 0, is in the form of `((18x^α + 15x^β - 10x^γ)^δ)/θ`, then (3α + 4β + 5γ + 6δ + 7θ) is ______. (Where δ is a rational number in its simplest form)
If `int 1/((x^2 + 4)(x^2 + 9))dx = A tan^-1 x/2 + B tan^-1(x/3) + C`, then A – B = ______.